Home work #6

Ch 8: 8.2,

Wed, 02/02/05

Ch 6: 6.1-6.2

Ch. 8

Q9:

The greater torque will be produced when a force is applied at the end of the wrench because $\tau = Fl$, where $\tau =$ torque, F = force, l = lever arm.

Q10:

Only F_2 because torque describes the tendency of a force to produce a rotation and only F_2 should rotate the rod. Axis

E8:

a)
$$\tau_{net} = Fl = (50 \text{ N}) (0.24 \text{ m}) = 12 \text{ N} \cdot \text{m}$$

b)
$$\tau_{net} = F(l/2) = (50 \text{ N}) (0.24 \text{ m/2}) = 6 \text{ N} \cdot \text{m}$$

E9:

$$\tau_{net} = F_1 l_1 - F_2 l_2 = 0$$
, or $F_1 l_1 = F_2 l_2$, $l_2 = (F_1 l_1)/F_2 = [(30 \text{ N}) (0.1 \text{ m})]/20 \text{ N} = 0.15 \text{ m}$

E10:

$$\tau_{net} = F_1 l_1 - F_2 l_2 = 0$$
, or $F_1 l_1 = F_2 l_2$, $F_2 = (F_1 l_1)/l_2 = [(5 \text{ N}) (0.1 \text{ m})]/0.04 \text{ m} = 12.5 \text{ N}$

Ch. 6

Q1:

$$W_A = F_A d_A$$
, $W_B = F_B d_B$, if $F_A = F_B$ and $d_B = 2d_A$, $W_B = 2W_A$

Q2:

No. W = Fd, hence if d = 0, work on the rock is zero.

Q12:

No. The change in kinetic energy of a block is equal $W = (F_{net})d$ where F_{net} is the net force (the force applied to the string minus a frictional force).

E1:

$$W = Fd = (40 \text{ N}) (2.5 \text{ m}) = 100 \text{ J}$$

E2:

$$W = Fd$$
, hence $F = W/d = (160 \text{ J})/(4 \text{ m}) = 40 \text{ N}$

E6:

a)
$$W = Fd = (60 \text{ N}) (10 \text{ m}) = 600 \text{ J}$$

b)
$$KE = \frac{1}{2} mv^2 = W = 600 \text{ J}$$

CP2:

a)
$$a = F/m = (50 \text{ N})/(100 \text{ kg}) = 0.5 \text{ m/s}^2$$

b)
$$d = \frac{1}{2} at^2 = \frac{1}{2} (0.5 \text{ m/s}^2) (4\text{s})^2 = \frac{1}{2} (0.5 \text{ m/s}^2) (16 \text{ s}^2) = 4 \text{ m}$$

c)
$$W = Fd = (50 \text{ N}) (4 \text{ m}) = 200 \text{ N} \cdot \text{m} \text{ (or J)}$$

d)
$$v = at = (0.5 \text{ m/s}^2) (4\text{s}) = 2 \text{ m/s}$$

e)
$$KE = \frac{1}{2} mv^2 = \frac{1}{2} (100 \text{ kg}) (2 \text{ m/s})^2 = \frac{1}{2} (100 \text{ kg}) (4 \text{ m}^2/\text{s}^2) = 200 \text{ J}$$

 $KE = W = 200 \text{ J}$